# Relationship: Categorical Data

### Chi-square (χ²) Test of Independence

May 22, 2017

BRIEF DESCRIPTION Whereas the One-sample Chi-square (χ²) goodness-of-fit test compares our sample distribution (observed frequencies) of a single variable with a known pre-defined distribution (expected frequencies) such as the population distribution, normal distribution, or poisson distribution, to test for the significance of deviation, the Chi-square (χ²) Test of Independence compares two categorical variables in a cross-tabulation fashion to determine group differences or degree of association (or non-association i.e. independence).  Chi-square (χ²) is a [READ MORE]

### Outlier cases – bivariate and multivariate outliers

August 14, 2016

In follow-up to the post about univariate outliers, there are a few ways we can identify the extent of bivariate and multivariate outliers:   First, do the univariate outlier checks and with those findings in mind (and with no immediate remedial action), follow some, or all of these bivariate or multivariate outlier identifications depending on the type of analysis you are planning.  _____________________________________________________ BIVARIATE OUTLIERS: For one-way ANOVA, we can use the GLM (univariate) procedure to save standardised or studentized residuals. Then do a normal [READ MORE]

### Which Test: Chi-Square, Logistic Regression, or Log-linear analysis

November 19, 2013

In a previous post I have discussed the differences between logistic regression and discriminant function analysis, but how about log-linear analysis? Which, and when, to choose between chi-square, logistic regression, and log-linear analysis?   Lets briefly review each of these statistical procedures: The chi-square test (χ²) is a descriptive statistic, just as correlation is descriptive of the association between two variables. Chi-square is not a modeling technique, so in the absence of a dependent (outcome) variable, there is no prediction of either a value (such as in ordinary [READ MORE]